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Introduction.

The use of equality axioms in resolution refutation systems has seemed to be

particularly inefficient. In order to remedy this difficUlty several modifi

cations of the resolution method have been proposed ( [4J , [13J , [15J , [11J
and [21J and more recently [2J and [lOJ). Of these the paramodulation strategy

of [15J seems to be particularly simple and efficient. The method for dealing

with equality investigated in this paper consists of using equality axioms and of

applying the version of hyperresolution proposed in [5J. The hyperresolution

and paramodulation methods are compared and a simple interpretation of the former

is found in a subsystem of the latter, providing a straightforward proof for the

completeness of this subsystem of paramodulation. Several proposals are put

forward for modirying the hyperresolution method and these modifications are seen

to induce corresponding modifications of the paramodulation strategy.

The method of this paper need not be confined to equality and can be applied

to the special treatment of more general sets of axioms.

Preliminaries.

If L is a literal then ILl denotes the atom A such that L = A or L = X.
An expression (literal, clause, set of clauses) is a ground expression if it con

tains no variables. Constants are function symbols with no arguments. A set of

expressions E is unifiable with unifier cr if Eois a. singleton. If E is

unifiable then there is a substitution e ,called a most general unifier (m.g.u.)

of E, such that e unifies E and for any unifier cr of E, 0 =e for

some SimiJarly a family of sets of expressions is simultaneously unifiable

with simultaneous unifier o: if E(T is a singleton for each E£ t.. If e is

simultaneously unifiable then there exists a simUltaneous unifier e of £, such

that for any simultaneous unifier cr of C-' 0 =e A for some A e is

called a most general simultaneous unifier (m.g.s.u.) of

A set of ground clauses e-= [Al, ••• ,An,BJ where, for 1 s i s n, Ai =
{ Li 1 0 AOi and B = (11" " ,1n } 0 BO is a (0 denotes disjoint union

as in Andrews' [lJ ). The resolvent of e is the clause C = AOl U ••• U BO'
The clauses in are the parents of C; Al, ••• , An are the satellites and B the

nucleus of C:. The literals Ll, ••• , Ln and their complement s r;" ...1n are said

to be literals resolved gpon in e. e is restricted if L ¢ C when L is

resolved upon ine. If C contains only two clauses then and C are said to

be binary. A clause is positive if all its literals are positive (i.e. unnegated
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atoms). The resolvent of a restricted clash is called a hyper-resolvent if all its

satellite parents are positive and if all the negative literals in its nucleus

parent are resolved upon in the clash. A!l-resolvent is a binary resolvent with

one positive parent. Every hyper-resolvent can be obtained by a sequence of Pl-
resolutions (11).

To define the general notion of clash (called latent clash in [12J and C18J )
we first define the notion of factor of a clause. The definition below. intro-

duced in [5]. differs both from that of Wos and Robinson [20] and from that

more recently introduced by J .A. Robinson in (14]. Given a clause A and a

unifiable subset E sa: A with m.g.u. e then the clause Ae together with its

distinguished literal Ee is called a satellite factor of A. Given a clause B

and a unifiable family 2: of subsets of B with m.g.s.u. e then the clause Be

together with the set of its distinguished literals t;,e is called a nucleus factor

of B. In case contains only one set of literals then the corresponding

nucleus factor of B is also a satellite factor. Conversely any satellite factor

can be regarded as a nucleus factor. We write the distinguished literals of a

factor as its first literals. A nucleus factor is complete if the set of its

distinguished literals coincides with the set of its negative literals.

For the general case we define clash resolution for sets of factors and we

insist that all and only distinguished literals be resolved upon. Given n

satellite factors of the form = [Ll) U AOl•••••An = [Ln1 U AOn and nucleus

factor B ={Kl •••• ,Knl U BO (where none of the factors Al, ••••An.B share common

variables), the set e = [AI.'" ,An.B ) is a if the family t: =

( t.I;.,K11 ,.... {Ln,Kn1 3 is unifiable. If e. is unifiable with m.g.s.u.

e • then C = (AOI U ••• U A
On

U BO)e is the resolvent of e. e is

restricted if La ¢ C when L is resolved upon in e and e is the m.g.s.u. of e .
Satellites, nucleus. hyper-resolvent, etc. are defined as for ground clauses.

Notice that the nucleus parent of a hyper-resolvent is always complete. It is

easy to show. as in C5] , that these notions of factoring and clash resolution

improve the usual notions by restricting the generation of redundant inferences

and of repeated calculation of m.g.s.u.s.

An arbitrary set of factors e is a clash if some set e' of variants of

factors in e is a clash. Le. <3' is e- where Avo is a variant of A for each

A . e and where no two factors in e' contain common variables. The resolvent

of e is the resolvent of e'. Similarly an arbitrary set of clauses e is a

clash if some set of factors a clash where contains exactly one factor

for each clause in e and where each factor in e' is a factor of some clause in

C. Again the resolvent of e is the resolvent of e,'.

Let S be a set of factors. define (S) as the union of S and of the set of

satellite factors of binary resolvents whose parepts belong to S. Define 4i(S)

similarly as the union of S and of the set of satellite factors of hyper-resolvents
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whose parents belong to S. For unfactored clauses S let DoL°(s) be the set of all

satellite factors of clauses in S, let be the set of all satellite factors

of positive clauses in S and of all complete nucleus factors of non-positive

clauses in S. Given any operation (such as n.. or lilt) from sets of factors to

sets of factors and operation 0-
0 (such as !=l ° or G).t 0) from sets of unfactored

clauses to sets of factors define crn+l(S) = G"'( ()'n(S)) for n O. The

completeness theorems for binary resolution and for hyper-resolution state that

given an unsatisfiable set of clauses So then I:l e: f.l n(So) and

o (I; meSo) for some n 20 and m O.

Let 0' be a derivation operation such as A. or % above then given

clauses Sand C n(S) for some n there corresponds to C in a natural way

at least one derivation tree T of C from clauses in S. It is convenient not to

exhibit in T the operation of factoring or the operation of standardising variables

in clauses occurring in clashes. We shall say that C occurs at the root of T

and clauses from S at the tips of T. We shall think of T as a partially ordered

set of occurrences of clauses with the occurrences at the tips being maximal

elements and the occurrence at the root being the least element lying below all

others. Given such a tree T and C 6 T we call T' the subtree of T rooted in C

if T' consists of all of T lying above C and including C at its root. Thus if

T is a derivation from clauses in S then any such T' is also a derivation from

clauses in S.

Equality Axioms and the Hyper-Resolution Method.

For the equality symbol = we write s =t instead of

s F t for s = t.
Let So be a set of clauses. Let E = E1. U E

2
U E

3
where

El = (x=x)
E2 = (Xi'" Yi' f(xl, .. ·,xp.",xn) = f(xl,· .. ,yi'''·'xn)
for f in the vocabulary of SO' for n 1 and 1 i n l '
E3 = [xi'" Yi' P(xl,···,xi,···,xn), P(xl'···'Yi'···'Xn)
for P the equality symbol and for P in the vocabulary of So,

(s , t ) and

n

For simplicity we adopt the convention that s = t is syntactically indistinguish-

able from t = s ,

If So has no normal model (i.e. a model in which the eqUality symbol of So is

interpreted as a sUbstitutive identity relation) then S = So U E has no model

whatsoever. Therefore there exists a hyper-resolution derivation T of 0 from

S.

The efficiency of obtaining T can be improved in several

imposing restrictions on the hyper-resolution method (5].

important of these is the «-restriction ( (5] and [6] ) •

directions by

Among the more

Given a set of
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clauses S, is an «-ordering for S if is a partial ordering of the set of

atoms constructible from the vocabulary of S such that for all sUbstitutions a"

L2 implies Lr a-.
Given S and :S: an «-ordering for S, a satellite factor C . fOr some

n 0, C = (Lll u CO' is an lX-factor if ILl' <. \L2' for no L2 CO. For

all n let O).t;O(n(S) be % n(S) without satellite factors which are not also (1)

0(, -factors. Then S unsatisfiable implies that 0 e. "l-l n(S) for some n ,
01.

If, for example, orders equality atoms before all others then the

0( -restriction for !: implies that we need never generate satellite factors of a

clause containing the equality symbol if the clause also contains other predicate

letters distinct :rrom the equality symbol.

The derivation T of C from So U E may be taken to be by hyper-resolution

with or without the We shall compare the efficiency of obtaining

T to that of obtaining a refutation of So by the Robinson - Wos system of para-

modulation and resolution.

Paramodulation and its Completeness.

Given a clause B and a single occurrence of the term t in B we write B(t)

to indicate the given occurrence of t in B. For ground level clauses A =
{ t = s) U AO and B = B{t) a paramodulant of A and B is the clause C =
B(s/t) LJ AO• B(s/t) indicates the result of replacing the distinguished

occurrence of t in B(t) by s. vfuen there is no possibility of confusion we shall

also indicate the result of this replacement by B(s).

At the general level paramodulation is defined in the context of refutation

systems which include a separate rule for factoring. For factors A =

(tl = s) U AO and B = B(t2) where A and B share no variables and where t l and

t 2 are unifiable with m.g.u. e ,a paramodulant of A and B is the clause C =

AOeU B e (s e /t2 e ) = (AO U B(s/t
2})
e. We shall refer to the factors

A and B respectively as the first and second parents of C. We call the

distinguished occurrence of t
2
in B the term paramodulated upon, although in a

more precise terminology it would be more cumbersomely referred to as "the

distinguished occurrence of the term paramodulated upon". The literals in which

the distinguished occurrences of tland t 2 appear are called the literals para-

modulated upon. We shall see that these literals may be taken to be precisely

the distinguished literals of satellite factors.

An important case of paramodulation occurs when the term t paramodulated upon

in a second parent B(t) is primary in B(t). An occurrence of a term t in B is

(1) The same theorem holds if '4. is replaced by '1
theorem holds for set of support.

A weaker
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primary if that occurrence is as an argument of some literal in B (11] Thus.

for example. if B = (f(c) {: c} then f(c) and the second occurrence of care

primary in B but the first occurrence of c is not. We shall say that an applica-

tion of paramodulation is primary if the term paramodulated upon in the second

parent is primary.

We extend the definition of paramodulation to arbitrary factors and to

unfactored clauses just as in the case of clashes.

Given clauses So let. E4 be the set consisting of the clauses f(xl •••••xn) =
f(xl, ••••xn) for every function symbol f occurring in the Herbrand universe H(SO)'

n o. Let au. 0(SOUE4) be the set of satellite factors of clauses in SOUE4•
Let for any set of factors S be the union of S and of the set of satellite

factors of binary resolvents and of paramodulants whose parents belong to S.

The following is a version of the completeness theorem reported in (15) •

Theorem 1. Suppose that the set of clauses So has no normal model. Then

for some n O. 0" G\.tn(SoUE4).

COmparison of the Paramodulation and Hyper-Resolution Methods.

Let So have no normal model and let T be a hyper-resolution derivation of 0

from S = SOU E. The clauses in E2U E
3
occur in T only as nuclei of clashes.

Moreover we may insist that no clause in E
3
occurring in T be factored with its

two negative literals unified; such a factor would be of the form (s (: t, t = s)

and would therefore be eliminable as a tautology. Thus to each clause C in E

there corresponds exactly one factor. In case C is in E2 or E
3
then the dis-

tinguished literals in the corresponding factor of C are just the negative

literals in C'. If C = f x = x) then x = x is the distinguished literal of the

corresponding factor of C. We may identify without confusion the set of clauses

E with the set of corresponding factors. The basis for comparison of the byper-

resolution and paramodulation methods rests upon the following two observations

(similar observations have been made independently by Chang in (3) ):

(1) Every hyper-resolvent in T with nucleus parent in E
3
is a

primary paramodulant of its two satellite parents.

(2 ) Every hyper-resolvent in T with nucleus parent B in E
2
is a para-

modulant of its one satellite parent and of an appropriate factor

B* in E4 (if B = {xi (: Yi.f(xl"' •••xi.···.xn) = :rl xl" "'Yi"· •• xn)}
then B* = [f(xl •••••xn) =f(xl, ••••xn)} ).

To verify (1) suppose that A = [s = t} U AO and B = {P(sl" ... 'si •••• 'sn))

U BO are satellite factors of a clash in T having nucleus in E
3•

The hyper-

resolvent of this clash is the clause C = ({P(sl, ... ,t, ... ,snH U BO) e where

e is the m, g.u , of the set of terms {s.t } But C is also a primary para-

modulant of A and B.

To verify (2) let A = (s
T having nucleus B in E. The

2

= t J U AO be the satellite fact or of a clash in

hyper-resolvent of the clash is the clause
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C = (f(Xl, ••• ,S , ••• ,xn) = f(Xl, ••••t, ••• ,xn)} UAO for the function letter f

and index i of the nucleus B. But C is also a paramodulant whose first parent is

A and second parent is the clause B* = {f(X
l,

••• ,Xn) = f(xl, ••• ,xn)) E4•
For application below we note that (1) and (2) above hold for resolvents of

arbitrary clashes provided only that the literals resolved upon in the nucleus

of coincide with the subset of its negative literals. In other words, (1)

and (2) continue to hold even if is unrestricted and the satellites of are

not positive.

Suppose So has no normal model, then S = SOUE is unsatisfiable but so is

S' = SOU E2U E
3U

E4• Let T' be a hyper-resolution derivation of 0 from S'.

Observations (1) and (2) hold equally well for T' as for T. He shall transform

T' into a paramodulation and binary resolution derivation T" of l:J from SOU E4•

Delete all tips of T' at which clauses from E
3
occur; replace each clause B

from E2 occurring at a tip of T' by the appropriate clause B* from E4• The

resulting tree is a paramodulation and hyper-resolution derivation of CJ from

SOUE4. If we now decompose each remaining hyper-resolvent into a sequence of

Pl-resolvents (see [5] or [11] ) we obtain the desired derivation T". The

fact that such a derivation T' can always be transformed into a corresponding

derivation T" constitutes a proof of Theorem 1. By investigating the structure

of T" more closely we see that we have in fact proved the much stronger theorem

2 below.

Let So be a set of clauses and oS an oc.-ordering for SO. Associate with

every complete nucleus factor B of a non-positive clause in So a single total

ordering of the negative (i.e. distinguished) literals in B. The definitions

below of and \.t. Cl( are formulated to guarantee that each Pl-resolvent in

T" is obtained by decomposing a hyper-resolvent in T' in a unique way. This unique

decomposition is accomplished by resolving on the distinguished literals of non-

positive factors in the order imposed by the original total ordering given to

the distinguished literals in complete factors of clauses in SO. Totally

ordering complete nucleus factors eliminates all but one of the n ] ways of

decomposing hyper-resolvents whose nucleus parent contains n distinguished

literals.

Let be the set consisting of

(1°) all OC-factors of positive clauses in S, and

(2°) all complete factors of all non-positive clauses in S.

Let au. 0( (S), for any set of factors S be the union of S and of the set of

consisting of

(1) all oc.-factors of paramodulants whose parents are Ol.-factors

in S, and

(2) for every Pl-resolvent C both of whose parents are in S and one of

which is an A and the other of which, B, is non-positive

and is resolved upon its first distinguished literal
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(a) if C is positive then all CX-factors of C, and

(b) if C is non-positive then exactly one factor consisting of the clause

C; the distinguished literals of C descend from the distinguished

literals of B and are totally ordered by the ordering inherited from

that of the distinguished literals of B.

In obtaining C Ci: DUcx(S) we insist that only distinguished literals be para-

modulated or resolved upon.

Theorem 2. Suppose that the set of clauses So has no normal model and that

is an «-ordering for SO. Then for some n 0, a «t.t:(So u E4).
Theorem 2 follows from the fact that we can insist that satellite factors of

clashes in T' be 0( -factors. Further examining the construction of T" from

T' we see that Theorem 2 continues to hold withthe following restrictions:

(rl) All applications of paramodulation are primary except when the

second parent is a clause B E: E4 in which case the term paramodulated

upon is one of the arguments of the function symbol occurring in B.

(r2) If B E4 then B is not a first parent of a paramodulant and as

parent of a resolvent it may be replaced by the clause {x = x 1 .
(r2) follows by constructing the tree Til directly from T instead of from T'.

It should now be fairly clear that the paramodulation method of Theorem 2

incorporating restrictions (rl) and (r2) is, in a sense, isomorphic to the method

of hyper-resolution with equality axioms. From this fact it follows that any

strategy compatible with the hyper-resolution method translates into a strategy

compatible with paramodulation. Clearly deletion of tautologies and deletion of

subsuming clauses are two such strategies. Moreover completeness for hyper-

resolution of renaming (8] implies the same for paramodulation provided the

equality symbol itself is not renamed.

Semantic Trees.

The notion of semantic tree was formulated by Robinson in [13 J and

investigated in the version described below in (5). We include a summary of

definitions and propositions for the special case of semantic tree used in the

proofs of Theorems 3, 4 and 5.

Semantic trees are finitely branching but possibly infinite trees with the

root as greatest element lying above all other nodes including any tips which are

minimal elements. Thus regard semantic trees as growing downwards rather than

upwards as in the case of derivation trees. Given a totally ordered (finite

or infinite) set of ground atoms K={Al, ••• ,An, ••• ) where i<j implies that Ai

precedes A., a binary semantic tree for K is a binary tree T with sets of literals
J

attached to its nodes, such that

¢ is attached to the root, and

are attached to the two nodes lying immediately below N.

or {A 1
n

is attached to the node N then and
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Given N T. al.. N called the assignment at N. is the set consisting of the

literals attached to N and to all nodes lying above N in T. A clause C fails

at N if for some ground substitution the complements of all the literals in

Ca- occur in CIl. N' If S is a set of clauses then N is a failure point for S

if some C . S fails at N but no D . S fails at any node above N. If no C S

fails at N then N is free for S. T is closed for S if every path beginning at

the root and terminating. if at all. only at a tip of T contains a failure point

for S. N is an inference node for S if the nodes immediately below N are failure

points for S. If S is unsatisfiable and K includes all atoms in some ground

unsatisfiable set of instances S' of instances of clauses in S then we say that

T is a semantic tree for S (relative to K).

If S is unsatisfiable and T is a semantic tree for S then T is closed for S.

If T is closed for a set of clauses S then S is unsatisfiable and moreover T

contains at least one inference node N for S. Some clause C r.t <1.l.°(S)) fails
-,

at N and its parents in S fail at the nodes immediately below N. More generally

given any node N T free for S then for some nand C E:, It n (S ). C fails at N.

Only a fails at the root of T.

Trivialisation of Inequalities.

Resolving a factor C = {s ;: t} U Co with {x = x J produces the clause

Coe where e is an m.g.u. of the set {s. t}. We shall call such a

resolution the operation of trivialising an inequality (17]. Application of

this operation is necessary for both the hyper-resolution and paramodulation

methods. Corollary 1 of the more general Theorem 3 below states in effect that

Theorem 2 with restrictions (rl) and (r2) continues to hold with the restriction.

(r3) No inequality in a clause C is trivialised unless either C belongs

to the original set So or else C is itself the result of trivialising

an inequality.

Strictly speaking Theorem 2 with restrictions (rl) - (r3) needs to be modified

to allow the trivialisation of distinguished literals other than just the first

distinguished literal of non-positive factors.

Theorem 3. Suppose S =SOl) Sl is unsatisfiable where Sl is a satisfiable

set of unit clauses. Then the set SOUR is unsatisfiable where R is the set of

resolvents of clashes with nuclei in So and satellites in Sl'

Proof. Assume first that S is a set of ground clauses. Let

Sl = {{ Lll ••••• { Ln) } We prove the theorem for this case by showing by

induction that for all k

Uk = SoU RkU (Sl - {{ Ll) ••••• is unsatisfiable where is

the set of resolvents of clashes with nuclei in So and satellites in

{{I;.J .···.{rgl}.
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Uo = S is unsatisfiable. Suppose that Uk is unsatisfiable for Let

T be a binary semantic tree for Uk relative to the set of atoms occurring in Uk

ordered in such a way that the atom I occurs last. T is closed for Uk;

we claim that T is also closed for Uk+l and that Uk+1 is therefore unsatisfiable.

If fails on T at a failure point for Uk then it fails below an inference

node N for Uk. The clause failing at the second failure point below N belongs to

SOURk• The resolvent of these two clauses belongs to Rk+l and fails at N.

Since it follows that T is closed for Uk+l and that Uk+l is unsatisfiable.

But then Un = SOU R is unsatisfiable.

If S is not a set of ground clauses let S' = S 'US' be an unsatisfiableo 1
set of ground instances of clauses in S where So' and Sl' are instances of clauses

in So and Sl respectively. Then SO'UR' is unsatisfiable where R' is the set of

resolvents of clashes with nuclei in SO' and satellites in Sl'. But by the

lifting lemma for clashes. SO'UR' is a set of ground instances of SOUR. which is

therefore unsatisfiable.

Corollary 1. Suppose S = SOUE is unsatisfiable. Then SOU RUE
2U

E
3
is

unsatisfiable where R is the set of resolvents of clashes with nuclei in So and

with satellites in El•
Proof. Take SOUE2UE3

above to be the So of Theorem 1. Then

U =SOUROU E
2
U E

3
is unsatisfiable where Ro is the set of resolvents of clashes

with nuclei in SOUE
2
U E

3
and satellites El• We shall show that resolvents of

clashes with nUClei in E
2
or E

3
can be removed from RO without affecting the

unsatisfiability of U.

Let S' be an unsatisfiable set of ground instances of clauses in S. We

may choose S' so that it contains no tautologies and no instances D' of a clause

in E2 where D' is of the form {ti ; tit f(tl •••••t n) = f(tl •••••t n)}. because

such an instance of D is subsumed by the instance {f(tl••••• t n) = f(tl •••••tn)l
of {x = x}. We may assume that each resolvent C in RO is obtained by lifting a

clash whose nucleus B' and satellites belong to S'. But then it is easy to

verify that if C is the resolvent of a clash with nucleus B in E
3
then the corres-

ponding instance B' of B in S' is a tautology and C may be eliminated from U •

Simil arly if CE.RO is the resolvent of a clash with nucleus B in E
2
then the

corresponding instance B' of B in S' is of the form (t.; t .•f(tl •••••t ) =
l n

f( t l •••••t n) J and B may be eliminated from U.

Thus every clause in RO - R may be removed from U without affecting its

unsatisfiability. It follows therefore that the set of clauses SOURUE
2
LJ E

3
is unsatisfiable.

Both Theorems 3 and 5 below are versions of the throw-away strategies

diSCUSSed in [9 J .
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Theorem 3 implies that satisfiable sets Sl of unit clauses may be effectively

preprocessed out of a set of clauses S = SoUSl before attempting to find a

refutation of the resulting set SO*. Our intuition is that such preprocessing

is likely to increase the effiLiency of obtaining proofs of more difficult theorems.

The figure below gives a simple example of two derivations of the same clause.

Only the first derivation will be generated if the original set So is pre-

processed. If the entire set So* must be generated before attempting to find a

refutation then this method of preprocessing may be inefficient for proving

theorems which have a simple proof which can be detected for instance with less

effort than that involved in generating all of SO* itself. On the other hand

since resolving a clause A SO with a unit clause in Sl produces a clause containing

fewer literals than are contained in A we may expect that this preprocessing

procedure will tend to retain the simplest of those derivations which differ by

permuting occurrences of clauses from Sl along their branches. Finally even

for the case of simpler theorems preprocessing can be made more efficient by

simultaneously generating SO* and generating resolvents from SO*.

Example.

.., *....0

Notice that the redundancy exemplified here can not be removed by implementing

singly conneceedneac [21] and is not removed by hyper-resolution, since both

derivations are by hyper-resolution.

The Subsumption Theorem.
The following theorem, applied in the proof of Theorem 5 below, is of

independent interest because it provides partial information about the extent of the

deduction completeness of resolution.

Theorem 4. Let 8 be a non-empty set of clauses and C a non-tautologous

clause logically implied by 8. Then for some n 0 there is a clause C' at "(s)
which subsumes C. Moreover if C is positive then C' e 'l-\: m(8), for some m o.

Proof. If S implies C then 8 U {C) is unsatisfiable, where the

sentence C, in prenex normal form, is existential and its matrix is a conjunction

of literals. 8 contains no existential quantifiers. Eliminating existential

quantifiers from 8 U ( C) we obtain an unsat i sj-LabLe set of clauses

80 = 8 U ({ Ll ) , ••• , {Ln1} where each Li is a @J'ound literal. Notice that

C can be reobtained from {Ll , •••• Ln1 by applying the substitution CT *
which substitutes for each Skolem constant a the variable x in C which was
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replaced by a when eliminating existentially quantified variables.

Let T be a binary semantic tree for So relative to some set of ground atoms K

containing all atoms in some ground unsatisfiable set SO' of instances of clauses

in SO' Let K be ordered in such a way that the atoms ILII t"'t ILn' precede

all other atoms in K. Let T' be the subtree of T rooted in the node N to which

is assigned the set of literals f r;.,t" • t Ln l (N exists because C is not a

tautology). T and T' are both closed for SO' Moreover t since no clause

{LJ fails in T't T' is closed for S and some C' Jln(S) fails at N. But

then t by the definition of failure t there is a substitution or such that C'er

tLnl Let cr ' = cr 0-* then C' 0-' (Lp ' " tLnl 0"* = C and

therefore C' subsumes C.

If C is positive we take T to be an M-clash tree for So where M is the set of

all negative ground literals which are complements of the atoms occurring in some

unsatisfiable set SO' of ground instances of clauses in sO(see [5]). Let T'

be any subtree of T rooted in a node to which is assigned the set of literals

{Lp .•. tLnl. Some C' e: O).f;n(S), for some n z 0, fails at the root of T'.

It follows that C' subsumes C.

A weaker version of Theorem 4 was first reported in (7]. More recently a

more general theorem has appeared in [19]. Theorem 4 unfortunately does not

settle the problem for resolution of deriving consequences from assumptions.

That this is so is due to the fact that if A and B are sentences of the first-

order logic, if A implies Bt and if A* and B* are the sets of clauses corresponding

to A and B, then it is not generally true that A* implies B*. A =3 y t'xp(xty)

and B = ';Ix 3yP(x,y) provide a simple counterexample.

Permutation of Inferences.

Theorem 3 and its corollary are permutation theorems in the sense that they

can be interpreted as stating that inferences in certain derivation trees can be

permuted in some regular way. Theorem 5 and its corollary are permutation

theorems in the same sense. The corollary to Theorem 5t stated in terms of para-

modulation, asserts that Theorem 1 continues to hold with restrictions (rl) -

(r5) where (r4) and (r5) are the following:

(r4) No resolvent is the parent of a paramodulant.

(r5) Given any complete resolution method for the predicate calculus

(i.e. set-of-support, Pl-deduction t AM-clashes, etc.) we may

insist that every resolvent be generated in accordance with

that method.

The completeness of the method corresponding to Theorem 1 and restrictions (r 1) ,

(r2), (r4) and (r5) can be obtained by analyzing the abstract of the original

Robinson-Wos completeness proof (16 J • It was in fact this observation which

originally motivated Theorem 5. Theorem 1 and restrictions (r3) and (r4) assert
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that any paramodulation and resolution refutation can be obtained in the canonical

form where all trivialisations of inequalities precede all paramodulations which

precede resolutions.

Suppose that S = SoU SJ. and that each clause in Sl is non-positive , Define

the set of £l-resolvents from So to be the smallest set containing

(1) each clause C S So and

(2) each resolvent of a clash with nucleus a complete factor of

some clause in Sl and with satellites factors of Sl-resolvents from

SO·
Notice that each resolvent obtained by (2) is obtained by resolving on all and

only on the distinguished literals of the complete nucleus factor of the clash.

In case Sl = E2UE3 each Sl-resolvent from So is either a clause in So or a clause

obtainable from SoU E4 by primary paramodulation without resolution.

Theorem 5. If S = SOU Sl is unsatisfiable then some finite set S* of

Sl-resolvents from So is also unsatisfiable.

Corollary 2. If the set of clauses S has no normal model and if So is the

closure of S under the operation of trivialising inequalities, then there is a

finite unsatisfiable set of clauses S* such that C e S* that C 6S0 or

C can be derived from SOUE4 by paramodulation without resolution.

Proof of Corollary 2. If S has no normal model then SUE is unsatisfiable

and, by Corollary 1, So U E2UE3
is unsatisfiable. Taking E2 U E

3
= Sl' applying

Theorem 5 and the definition of Sl-resolvent from SO' the conclusion of the coroll-

ary follows.

The proof of Theorem 5 requires two lemmas.

Lemma 1. Let T be a hyper-resolution derivation of a positive non-tautologous

ground clause C from ground clauses SuiD} where D is non-pos i tive and occurs

in T only at the nucleus node of T immediately above the root. Then there is a

hyper-resolution derivation T* of a clause C' C from clauses S* where S* is a

set of {D } -resolvents from S.

Proof of Lemma 1. Let D = f 11 , ••• ,1n ) U Do where DO is the maximal positive

subclause of D; let C =(Kl •••••Km1. Then So =SUD u UKl) ••••• {Km11 is

unsatisfiable since SUD implies C. Let SO' = SuR U t{K11 •••• , ( Km11 where

R is the set of resolvents of clashes C having clauses in S as satellites, D as

nucleus and where the literals 1l •••••1n are the literals in D resolved upon in C.
S* = SuR Ls a set of fD} -resolvents from S. We shall show that SO' is un-

satisfiable. By the unsatisfiability of SO' it will follow that S* implies C and

by Theorem 4, since C is not a tautology. there is a hyper-resolution derivation

T* of a clause C' C from S*.

To prove the lemma it remains to show that So' is unsatisfiable. Let T'

be a binary semantic tree for So relative to the set of atoms occurring in So
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ordered in any way. Then T' is closed for So since So is unsatisfiable. It

suffices to show that if is a complete path from the root of T' to a tip of

T' such that D fails at some node N e.. then some clause D' E: R fails at some

node N' E: From this it follows that T' is closed for So' and that SO' is

unsatisfiable.

Let 53 be such a path and N E: 53 such a node. For 1 is n let i be the

complete path of T' which differs from n only in L., i.e. .= - {L.1 ) u
fL.l. Then each such contains a failure point N.for some clause

Ai = i Li 1 (; AOi E: So' But Ai :; D since i does not contain Li and

A. :; K. for any j, 1 m, since L. is positive and K. is negative. Therefore
a J J

Ai e; S. Let D' =AOIU••• U AOnU DO' Then D' is the resolvent of the clash

C = ••• ,An,D3 and D' fails at some node N' 6 6?> •
Lemma 2. Suppose T is a hyper-resolution derivation of 0 from ground

clauses S and suppose C E: S is a positive clause which occurs at a tip NeT.

Let C' S; C. Then there is a hyper-resolution derivation T' of 0 and a one-one

correspondence from the tips of T' onto a subset of the tips of T such that

(1) C' occurs at the tip NO' = -l(NO) in T', and

(2) for all tips N'e T' Nt N' the clause occurring at N' in T' is, 0 '
identical to the clause occurring at (N') in T.

Proof of Lemma 2. (by induction on the number n of nodes T).

If n =1 then C =C' = (] ,T' =T and the correspondence is the identity.

Suppose now that T has k nodes and that the lemma holds for any derivation tree

having fewer than k nodes. Let be the hyper-resolution clash of which C is

a satellite at NO' There are two cases to consider: (1) the L in C resolved

upon in occurs in C' and (2) L does not occur in ct.
Case (1). Let e,' = (e - [C}) U t c'l. Then c,' is a hyper-

resolution clash and its hyper-resolvent D' subsumes the hyper-resolvent D of

Let Tl be the derivation obtained by ignoring all of the nodes in T lying

above the node Nl which lies immediately below NO' Then Tl is a hyper-

resolution derivation of 0 and the clause D at Nl is subsumed by D'. Tl
contains fewer than k nodes and by induction hypothesis therefore there is a

hyper-resolution derivation Tl' and one-one correspondence 1 from the tips

of Tl' onto tips of Tl such that D' occurs at ip1-1 (Nl) and for Nt E: Tl' ,

N' :; 1-1 (Nl), the clauses occurring at N' and ip1 (N') are identical.

Let TO' be obtained from the subtree TO of T rooted in Nl by replacing the clauses

C and D at NO and Nl by C' and D' respectively. Let O(N) = N for every tip

N of TO'. TO' is a hyper-resolution derivation of D'. Let T' be obtained

by identifying the tip (Nl) of Tl' with the root of TO', Then T' is the

desired hyper-resolution derivation of [J and the desired mapping is defined

as ! 1 for tips of T' which belong to Tl' and as t 0 for tips of T' which

belong to TO'.
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Case (2). If L ¢ C' then C' subsumes the resolvent D of e. Let Nl and

Tl be as in case (1). Since Tl contains fewer than k nodes and since C' subsumes

D, the induction hypothesis applies to Tl and to the node Nl Tl• The

derivation Tl' and mapping 1 such that C' occurs at 1-1 (Nl) are the

desired hyper-resolution derivation T' of 0 and mapping

Proof of Theorem 5. Suppose first that S is a set of ground clauses.

Let S* be the finite set of all Sl-resolvents from SO. Let T be a hyper-

resolution derivation of (] from S containing no tautologies and let T' be

obtained from T by consecutively deleting all nodes above each Sl-resolvent

from SO' i.e. T' is the hyper-resolution subtree of T which derives 0 from

clauses in S*uSl and which contains Sl-resolvents only at its tips. We shall

transform T' into a tree TO which derives 0 from clauses in S*. It will

follow that the finite set S* is unsatisfiable.

The construction of TO is by induction on the number n of occurrences of

clauses in Sl at the tips of T'. If n = 0 then T' is already a derivation of

o from some subset of clauses in S*. Suppose then that T' contains k > 0

occurrences of clauses from Sl at its tips and suppose that any hyper-resolution

derivation Til of 0 from S*US
I
which contains fewer than k such occurrences and

no tautologies can be transformed into a derivation TO of 0 from S*. We

shall transform T' into such a tree Til. Then TO' the transform of Til, is also

the desired tranSformation tree for T'.

Let N be an interior node in T' such that the hyper-resolvent C occurring

at N is the resolvent of a clash with nucleus D Sl and such that the tips of T'

lying above N contain only this one occurrence of a clause from Sl. The subtree

of T' rooted in N derives C from S* G [D}. By Lemma 1, since C is not a

tautology, there is a hyper-resolution derivation Tl of some C' C C from S*.

Let T2 be obtained from T' by ignoring all of T' above the node N. Then, by Lemma

2, there is a hyper-resolution derivation T
3
of (] from S*u Sl u f c' J and

a one-one correspondence from the tips of T
3
onto a subset of the tips of T2•

T
3
contains fewer than k occurrences of clauses from Sl at its tips and the clause

C' occurs at the tip of T
3
corresponding to N in T2• Let Til be obtained

from T
l

and T
3
by identifying the root of T

l
with the tip -l(N) of T

3•
Til

is the desired hyper-resolution derivation of 0 from S*U Sl. That Til

contains no tautologies can be verified by checking that the derivations Tl and

T
3
contain no tautologies.

If S is not a set of ground clauses then let S' = SO'081' be an unsatisfiable

set of ground instances of clauses in S, where SO' and Sl' are instances of

clauses in So and Sl respectively. By the part of the theorem already proved,

there is a finite unsatisfiable set S*' of Sl-resolvents from SO'. By the lifting

lemma for clashes, for every clause A' S*' there is an Sl-resolvent A from So
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Let S* be the set of all such A for all A' S*'.

Then S* is unsatisfiable since its set of instances 8*' is unsatisfiable.

The reader familiar with Andrews' paper [1] will note the similarity

between the proof of Theorem 5 using Lemmas 1 and 2 and the proof in (1] of

Theorem 1 using Lemmas 1-5.

Concluding Remarks.

(1) The argument for using hyper-resolution with equality axioms is based

on a comparison with paramodulation and resolution applied to sets of

clauses containing the axioms E4. In this connection it should be

noted that Robinson and Wos [15] conjecture the completeness of a

more restricted paramodulation system: in this system one adds to a

set of clauses So which has no normal model just the clause \x =x}

and applies paramodulation and resolution to derive 0 Inter-

pretation of this system in terms of hyper-resolution is not entirely

straight-forward and comparison of these two systems is therefore

correspondingly more difficult.

(2) The set E2 need not include axioms for Skolem-function letters f

which result in 8
0

from the elimination of existential quantifiers.

That this is so is easily verified by noting that before eliminating

existential quantifiers we need only include axioms of functional

substitutivity E2 for the function letters actually occurring in the

original fully quantified set of sentences. This improvement of the

hyper-resolution method induces a corresponding improvement of (rl)

and (r2) in the paramodulation method. In the case where the original

quantified set of sentences contains no function letters, the set E2
is empty, and for paramodulation, (rl) and (r2) state that E4 may be

replaced by the single clause f x = x}. We do not consider that the

well-known procedure for eliminating function letters by introducing

new predicate letters reduces the problem of proving the Robinson-Wos

conjecture to the special case just verified. This conjecture

remains an impDrtant problem which has counterparts in the f-matching

method (4) , in the lifting lemma for generalised resolution (13)

and in E-resolution (10).
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